Modulation of the pHLIP transmembrane helix insertion pathway.
نویسندگان
چکیده
The membrane-associated folding/unfolding of pH (low) insertion peptide (pHLIP) provides an opportunity to study how sequence variations influence the kinetics and pathway of peptide insertion into bilayers. Here, we present the results of steady-state and kinetics investigations of several pHLIP variants with different numbers of charged residues, with attached polar cargoes at the peptide's membrane-inserting end, and with three single-Trp variants placed at the beginning, middle, and end of the transmembrane helix. Each pHLIP variant exhibits a pH-dependent interaction with a lipid bilayer. Although the number of protonatable residues at the inserting end does not affect the ultimate formation of helical structure across a membrane, it correlates with the time for peptide insertion, the number of intermediate states on the folding pathway, and the rates of unfolding and exit. The presence of polar cargoes at the peptide's inserting end leads to the appearance of intermediate states on the insertion pathway. Cargo polarity correlates with a decrease of the insertion rate. We conclude that the existence of intermediate states on the folding and unfolding pathways is not mandatory and, in the simple case of a polypeptide with a noncharged and nonpolar inserting end, the folding and unfolding appears as an all-or-none transition. We propose a model for membrane-associated insertion/folding and exit/unfolding and discuss the importance of these observations for the design of new delivery agents for direct translocation of polar therapeutic and diagnostic cargo molecules across cellular membranes.
منابع مشابه
Membrane physical properties influence transmembrane helix formation.
The pHLIP peptide has three states: (I) soluble in aqueous buffer, (II) bound to the bilayer surface at neutral pH, and (III) inserted as a transmembrane (TM) helix at acidic pH. The membrane insertion of pHLIP at low pH can be used to target the acidic tissues characteristic of different diseases, such as cancer. We find that the α-helix content of state II depends on lipid acyl chain length b...
متن کاملResidue-specific structures and membrane locations of pH-low insertion peptide by solid-state nuclear magnetic resonance
The pH-low insertion peptide (pHLIP) binds to a membrane at pH 7.4 unstructured but folds across the bilayer as a transmembrane helix at pH∼6. Despite their promising applications as imaging probes and drug carriers that target cancer cells for cytoplasmic cargo delivery, the mechanism of pH modulation on pHLIP-membrane interactions has not been completely understood. Here, we show the first st...
متن کاملpHLIP-FIRE, a Cell Insertion-Triggered Fluorescent Probe for Imaging Tumors Demonstrates Targeted Cargo Delivery In Vivo
We have developed an improved tool for imaging acidic tumors by reporting the insertion of a transmembrane helix: the pHLIP-Fluorescence Insertion REporter (pHLIP-FIRE). In acidic tissues, such as tumors, peptides in the pHLIP family insert as α-helices across cell membranes. The cell-inserting end of the pHLIP-FIRE peptide has a fluorophore-fluorophore or fluorophore-quencher pair. A pair memb...
متن کاملTuning the insertion properties of pHLIP.
The pH (low) insertion peptide (pHLIP) has exceptional characteristics: at neutral pH it is an unstructured monomer in solution or when bound to lipid bilayer surfaces, and it inserts across a lipid bilayer as a monomeric alpha-helix at acidic pH. The peptide targets acidic tissues in vivo and may be useful in cancer biology for delivery of imaging or therapeutic molecules to acidic tumors. To ...
متن کاملTargeting acidic diseased tissue: New technology based on use of the pH (Low) Insertion Peptide (pHLIP).
We discuss a peptide that targets cells in the acidic tissues that result from a range of pathological states, including tumours, and that can also translocate cell-impermeable cargo molecules across cell membranes in a pH-dependent manner. The technology is based on the interactions of a water-soluble membrane peptide, which we call pHLIP (pH (Low) Insertion Peptide), with the lipid bilayers o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 102 8 شماره
صفحات -
تاریخ انتشار 2012